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Abstract

The considerable performance gain of turbo codes compared to other conventional coding schemes makes it
to a primary candidate for OFDM-based wireless LANs. This paper shows the implementation of a turbo
decoder for a flexible high bit rate modem architecture. Focus is on optimization of the Max-Log-MAP
decoding algorithm with respect to hardware realization. Furthermore, parallelization concepts are discussed
to allow high throughput while keeping flexibility. Finally implementation results based on a FPGA solution
are presented.

1 Introduction

T
HE constantly increasing demand for high
speed and high quality mobile data transmis-

sion pushes research and development towards wire-
less local area network technologies incorporating
adaptive and reconfigurable modem architectures.
In line with this tendency, the objective of the
IST project WIND-FLEX [1] is the development
of a flexible high bit rate modem architecture for
a wireless indoor environment at 17 GHz allowing
slow mobility.

As channel coding scheme turbo coding [2] was
selected due to its outstanding error correction ca-
pability. On the other hand advanced technologies
allow its relative complex implementation with fea-
sible effort. In this paper we present turbo decoder
implementation aspects aiming at a FPGA solution.
At first algorithms are researched to minimize hard-
ware consumption while keeping performance con-
stant. This includes optimization of integer arith-
metic ranges and quantization aspects. Moreover,
parallelization concepts are investigated as well as
methods to minimize the critical path (maximize
clock frequency) aiming at high throughput decod-
ing.

2 System Overview

The WIND-FLEX modem employs OFDM with 128
subcarriers in a 50 MHz channel at 17 GHz based on
TDMA/TDD as radio access scheme. The coverage
of the modem ranges from 10 m for non line of sight
(NLOS) up to 100 m for line of sight (LOS) radio
links. Considering a 25 % overhead for signalling
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and control information, a maximum payload of
around 100 Mbps can be achieved for a point-to-
point communication.

The general modem architecture has been de-
signed to cope with environmental changes and
different user requests at run time while ensuring
an overall operational efficiency. The latter can be
interpreted as a compromise over several require-
ments like data rate, bit error rate, power consump-
tion and others. For that purpose, the so called
supervisor was additionally introduced which takes
the dynamic adaption of the transmit and receive
parameters into account. Figure 1 shows the general
modem architecture at physical layer.
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Fig. 1. WIND-FLEX physical layer concept

After turbo coding, the coded bits are mapped
onto modulation symbols by BPSK, QPSK, 16-
QAM and 64-QAM. These symbols are interleaved
across subcarriers. According to the employed weak
subcarrier excision algorithm, the strongest 92 sub-
carriers are dynamically selected out of the 100
active ones. Following the 128 point complex IFFT,
the guard interval is added resulting in a OFDM
symbol length of 3.0 µs. Then, 178 OFDM symbols



are arranged within one frame assuming that the
channel state is quasi-static during this time.

Because of the supervisor concept the turbo cod-
ing scheme has to be flexible in terms of code
rate and block length. Furthermore, it should of-
fer a good compromise between performance and
implementation complexity. Considering these re-
quirements the following turbo coding scheme was
selected to be applied:

• parallel concatenation of two recursive system-
atic convolutional (RSC) codes with polynomi-
als (13, 15)oct (3GPP turbo code)

• offered code rates: 1/2, 2/3 and 3/4 (punctur-
ing of mother code rate 1/3)

• S-random interleaving

A more detailed overview about coding and mod-
ulation aspects within the WIND-FLEX enviroment
is given in [3].

3 Max-Log-MAP Turbo Decod-

ing

The MAP algorithm is the optimal symbol-by-
symbol SISO (soft-input soft-output) decoding
scheme to decode the RSC codes of a turbo code.
It is also called the (modified) Bahl-Cocke-Jelinek-
Raviv (BCJR) algorithm [4]. So, a turbo decoder
based on the MAP algorithm has the best per-
formance but is of a high complexity. To reduce
its complexity suboptimal MAP algorithms were
developed [5]. One of these suboptimal algorithms
is the Max-Log-MAP that is applied within the
introduced system. The resulting performance loss
due to this suboptimality can be compensated by
scaling the Max-Log-MAP extrinsic value output
during the iterative turbo decoding process [6]. To
minimize memory consumption of an implementa-
tion and to make it independent from the coding
block length the so called sliding window version of
the Max-Log-MAP algorithm is employed [7].

Another SISO decoding algorithm is the SOVA,
an extended Viterbi algorithm [8]. Improved ver-
sions of this algorithm reach a similar performance
as MAP-based algorithms [9]. But with respect to
hardware implementation the Max-Log-MAP algo-
rithm is more suitable [10].

In the following, the Max-Log-MAP algorithm
shall be described in a way aiming at implemen-
tation. Therefore integer arithmetic is assumed.
Equations describing the algorithm are formed in
a way that integer ranges become optimal from
an implementation point of view. Furthermore, no
clipping or quantization loss shall be caused within
the Max-Log-MAP implementation. Clipping and
quantization shall be allowed to keep extrinsic infor-
mation (exchanged between turbo decoding itera-
tions) in a feasable integer range only. The resulting

performance loss is negligible compared to the loss
caused by quantization of decoder soft-input within
the demodulator.

3.1 Branch metric calculation

Let ys
k and yp

k be the systematic and parity (re-
dundancy) RSC code part at decoder input with
k ∈ {1, . . . , N}. They are the decoder soft-input
in form of Log-Likelyhood-Ratios (LLRs). In our
application they are two’s complement integers with
4 bit resolution provided by the demodulator. Let
Le,in

k be the input extrinsic information from a pre-
vious decoding iteration step. Le,in

k is represented by
a 6 bit integer and covers the range {−24, . . . , +24}
only (see section 3.5). Now, the branch metrics are
calculated as follows:

γk(s′, s) = xs
k(s′, s) · (Le,in

k + ys
k) +xp

k(s′, s) · yp
k (1)

xs
k and xp

k are the code bits of a state transition
from state s′ to s, whereby xs

k, xp
k ∈ {−1, +1}.

Because of calculating the branch metrics in that
manner, only two different absolute values of them
exist per trellis step k. Furthermore, the RSC code
trellis can be separated into 4 butterfly elements. All
4 branch metrics associated with such a butterfly
element are the same concerning its absolute value,
they differ only in sign (see figure 2).
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−γk

−γk

Fig. 2. Butterfly element of RSC code (13, 15)oct trellis

From an implementation point of view this can
be used to reduce wiring effort. Only two instead of
four different branch metrics have to be routed to
and within forward/backward recursion units. But
instead of additions only, subtractions have also to
be performed inside them. On the other hand this
method to calculate branch metrics (equation 1)
doubles the integer range compared with what is
minimal needed. This problem can be solved as will
be shown in next subsection.

3.2 Forward and backward recursion

The forward and backward state metrics are calcu-
lated as follows:

αk(s) = max
s′∈S

(

αk−1(s
′) +

1

2
· γk(s′, s)

)

(2)



βk(s′) = max
s∈S

(

βk+1(s) +
1

2
· γk+1(s

′, s)

)

(3)

Looking at equation 1, it can be seen that the four
branch metrics of a trellis step k are either all even
integers or all odd ones, never both. This kind of
redundancy within the branch metrics is eliminated
by division by 2 in equations 2 and 3. This division
is implemented in hardware by shifting a bit vector.
In case of odd two’s complement values, which are
normally not divisible by 2, this implementation
method is equivalent with subtraction of 1 and
succeeding division by 2. Note that the inherent
subtraction of 1 from all state metrics αk and βk

respectively leads to no degradation of Max-Log-
MAP performance.

3.3 State metric normalization

Equations 2 and 3 are recursive ones. The state
metrics increase with increasing k due to maximum
operation. Regarding soft value calculation, only
the difference between state metrics at step k is of
interest. Because of the RSC code trellis structure
this difference is bounded [11]. Based on a branch
metric range of {−40, . . . , +40} and equations 2 and
3, the state metric difference is bounded to 72.

There exist two main approaches for solving the
normalization problem. To prevent an increased
critical path in hardware implementations the so
called modulo-normalization is often used. Its prin-
ciple is described in [12]. But the integer range
needed for state metrics is double of metric dif-
ference bound. The second and commonly used
approach is the normalization of state metrics by
conditional subtraction of a variable or fix value.
This additional operation usually causes an in-
creased critical path in hardware implementations.
However, this can be circumvented by subtracting
a fixed value that is a power of 2.

What we have implemented is subtraction of 32
from all state metrics αk or βk of a trellis step k
if one of them is greater or equal than 104. This
guarantees with respect to a metric difference bound
of 72 that all state metrics are positive values.
Because subtraction is done in the following trellis
step, the state metric range reaches up to 123. So,
what we need to store state metrics, are only 7 bit
per value. See also figure 3.

The basic implementation unit that performs for-
ward and backward recursion is the so called Add-
Compare-Select (ACS) unit. It realizes equations
2 and 3. Because of its recursive character it is
the bottleneck concerning the maximum clock fre-
quency of the turbo decoder implementation. The
normalization method introduced does not cause an
increased critical path within the ACS unit.
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Fig. 3. Integer ranges at forward and backward recursion
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Fig. 4. Normalization within ACS unit (forward recursion)

As can be seen in figure 4, the comparison
whether a state metric is greater or equal 104 is
done in parallel with the state metric comparison
(subtraction) and with multiplexing. Furthermore,
the conditional subtraction of 32 can be done by
manipulating some MSBs of the adders without
increasing the critical carry chain inside.

3.4 Soft value calculation

The calculation of Max-Log-MAP decoder soft-
output is done in the following way, whereby S0

and S1 indicate all state transitions caused by an
information bit 0 and 1, respectively.

Lk = max
S1

(

αk−1(s
′) +

1

2
· γk(s′, s) + βk(s)

)

−max
S0

(

αk−1(s
′) +

1

2
· γk(s′, s) + βk(s)

)

(4)

The sign bit of Lk represents the decoded bit.
The extrinsic information that is needed for further
turbo decoding iterations is calculated as follows:

Le,out
k = Lk − Le,in

k − ys
k (5)

The resulting extrinsic values Le,out
k are two’s

complement integers with 9 bit resolution. Note,
that during all soft-value calculations no clipping
is done and no other performance loss is caused.



3.5 Processing of extrinsic information

Extrinsic information exchanged between decoding
iterations grows with successive iterations. There-
fore the integer range of implemented arithmetics
and memory consumption would become larger.
The design of a Max-Log-MAP decoder covering the
whole range needed by extrinsic information is not
necessary because the extrinsic information range
and resolution can be limited without significant
performance degradation. Further details are pre-
sented in [13] and [14].
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Fig. 5. Extrinsic information within SISO decoder

As can be seen in figure 5, extrinsic information
is clipped to a 6 bit value at first. From BER
performance point of view, clipping here leads to
an earlier flattening of BER curves. But the selected
range does not influence BER performance down to
10−6 which is required. At a second step, extrinsic
information is mapped (compressed) by a look-up
table to a 4 bit value. This step includes two effects.
At first a nonlinear quantization and at second a
scaling of extrinsic information.

Limitation of range and resolution of extrinsic
information are design parameters and have to be
selected as a compromise between BER performance
loss and reduction of hardware consumption (arith-
metic and memory word widths).

4 Parallelization Concepts

The implementation of high speed turbo decoders
strongly depends on parallelization concepts. For
turbo decoders based on sliding window MAP al-
gorithms 5 different parallelization levels can be
classified as shown in figure 6 (see [15]).

Depending on the levels that are used for paral-
lelization, a turbo decoder implementation can be
adapted to meet the requirements of throughput,
flexibility and hardware consumption. The levels
highlighted in grey (figure 6) are the ones where
parallelization is applied in the introduced system.

4.1 Recursion level

Parallelization at recursion level is mandatory for
high speed applications. This means the parallel cal-
culation of all state metrics of a trellis step. Here, 4
double ACS-units are employed. A double ACS-unit
performes the ACS operations of a butterfly element
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Fig. 6. Parallelization levels of turbo decoder implementa-
tions

as presented in figure 2. Advantageous here is the
reduced wiring effort concerning branch metrics (see
section 3.1).

4.2 Subblock level

Subblock level operations base on the sliding win-
dow principle described in [7]. Max-Log-MAP de-
coding is done subblock by subblock, each of length
Nsb. There exists a third recursion type here called
aquisition. This calculates initial values for back-
ward recursion. The sliding windows principle is
depicted in figure 7.
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Fig. 7. Sliding window data processing

Figure 8 shows the structure of the SISO decoder.
All 3 recursion types are processed in parallel. This
is the highest parallelization at subblock level. It
assumes a three times higher input memory access
rate. To prevent this, two cache memories are in-
troduced. Each of them stores Nsb branch metric
sets of 2 times 7 bit. Forward state metrics are
buffered until they are fed to soft value calculation.
The latter is carried out in backward direction.
The size of this forward state metric memory is
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Fig. 8. SISO decoder structure

Nsb values of 7 bit width. Extrinsic information
is buffered for one block to exchange themselve
between SISO decoding steps. All buffers are dual
port ones because they have to be read and written
at the same time.

4.3 SISO decoder level

As described in the previous subsection, only one
subblock is processed by ACS recursions at one time
in the introduced sytem. Parallelization at SISO
level would lead to processing of several subblock at
the same time. This would require a higher memory
access rate and complicates implementation due to
the need for large word width buffers and due to
interleaving.

The SISO processing time for one code block
which is half of iteration time can be calculated as
shown below:

TSISO ≈
N + 2Nsb

fclock

(6)

As it can be seen, the SISO processing time
per bit that corresponds to throughput depends on
block length N . Highest throughput is 1 bit per
clock providing N � Nsb.

4.4 Turbo decoder level

The turbo decoder implementation is based on the
structure presented in figure 9.
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Fig. 9. Basic turbo decoder structure

At turbo decoder level only one SISO decoder is
implemented. There exist 3 input memories contain-
ing the soft values ys, yp1 and yp2 of a block of
length N . The SISO decoder alternately processes
the RSC code 1 and 2 iteration by iteration. Inter-
leaving and deinterleaving is achieved by read and
write operations of ys and L̂e memories.

Parallelization at turbo decoder level would mean
to implement more than one SISO decoder. These
are arranged in a pipelined manner. This principle
fixes the number of decoding iterations. So, it can
not be changed at runtime. Due to the need of
flexibility, parallelization at this level has not been
considered.

4.5 System level

The increase of throughput at system level leads
to implementation of more than one turbo decoder.
The decoder introduced here employes 6 turbo de-
coders which are implemented in parallel. Because
of hardware limitations they are not completely in-
dependent from each other. SISO decoder and turbo
decoder controlling is implemeted only ones. It in-
cludes also interleaver patterns stored in lookup ta-
bles. Therefore, all 6 turbo decoders synchronously
process the incoming data blocks. This results in
an increased decoding delay, because 6 blocks have
to be received before decoding can start. However,
throughput is not decreased. The input and output
memories exist twice. So, if turbo decoders are
active, input and output shadow memories can be
filled and read out respectively by neighboring units.

5 Results

As result of our work the turbo decoder described
was implemented in hardware. It was completely
written in VHDL language and synthesized for an
Altera APEX FPGA type EP20K600. It consumes
53% of logic and 57% of memory resources of this
FPGA.

The turbo decoder is flexible in terms of block
length and number of decoding iterations. These
parameters can be changed at run time. Block
length N has to be a multiple of Nsb, where Nsb is
variable up to 32. Interleavers are implemented in
form of lookup tables. Maximum block length and
maximum number of interleavers depend on mem-
ory resources (input, output and interleaver mem-
ory). Our implementation supports block lengths
up to N = 512 and includes 9 different S-random
interleaver pattern.

Decoder throughput depends on block length N
(see section 4.3) and on the number of decoding
iterations. Based on a system clock of 50 MHz for
N � Nsb we reach a throughput of about 135
Mbps per full iteration. Therefore, the number of



decoding iterations is limited down to 1 iteration
to handle highest system throughput of about 100
Mbps. For lower throughput modes more iterations
are performed.

6 Conclusions

In this paper a turbo decoder implementation for a
high throughput OFDM-based WLAN demonstra-
tor was presented. Aiming at an optimized imple-
mentation of algorithms, it was shown how the Max-
Log-MAP algorithm has to be modified to minimize
the word width of arithmetic operations as well as
the consumption of memory.

To reach highest throughput, the state metric
normalization procedure within the ACS-unit was
optimized in a way that the critical path is not in-
creased. Furthermore, different parallelization con-
cepts have been discussed and finally realized.
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