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ABSTRACT 

 

Concatenated codes are typically decoded using iterative 

methods. The sum-product algorithm can be shown to be 

optimal for cycle-free codes. In this paper two commonly 

used versions of the sum-product algorithm are investi-

gated with respect to their performance for concatenated 

codes with cycles. Various serial concatenated codes with 

an inner accumulator are studied. Simulation results for 

both update modes are presented for Repeat-Accumulate 

codes, Accumulate-Repeat-Accumulate codes, and Pro-

duct-Accumulate codes. 

1. INTRODUCTION 

 

An accumulator (the simplest rate-1 recursive convo-

lutional code) is an often used subcode for the con-

struction of concatenated codes. In the last years, many 

serial concatenated codes with an accumulator as inner 

code have been presented, e.g., Repeat-Accumulate codes 

(RA) [1][2], Accumulate-Repeat-Accumulate codes (ARA) 

[3], or Product-Accumulate codes (PA) [4]. 

This work was initialized by an observation for the well 

known Repeat-Accumulate codes: the two different itera-

tive decoding modes for an inner accumulator (serial and 

parallel update) result in different behaviors of the overall 

bit-error rate. Therefore, the focus in this paper is set on 

codes with a similar structure, i.e., serial concatenated 

codes with an inner accumulator. An important issue is the 

interrelationship of the accumulator decoding with the 

capability of the concatenated codes to correct errors, 

since the utilized iterative decoding – implemented by 

message-passing – is not optimal for codes with cycles [5]. 

This paper is organized as follows. In the next section, 

the method of iterative decoding for concatenated codes 

and its realization with message-passing are described 

briefly. The issues that result from code graphs with cycles 

are discussed. In Section 3 the two commonly used update 

modes for the accumulator decoding are described. Some 

simulation results for Repeat-Accumulate, Accumulate-

Repeat-Accumulate, and Product-Accumulate codes are 

presented in Section 4 and discussed in Section 5. 

2. ITERATIVE DECODING AND CYCLES IN THE 

CODE GRAPH 

 

It is well known that concatenated codes should consist of 

relatively simple component codes, in order to allow sim-

ple local decoding. The latter is required for an efficient 

iterative decoding of the overall code. Moreover, the per-

formance of a concatenated code relies on sufficient ran-

domness, which can be easily achieved by a randomly 

generated interleaver pattern. The structure of the code 

ensures a manageable complexity for the encoding and the 

decoding of the code, whereas the introduced randomness 

permits a good error correcting capability [6]. 

Iterative decoding is based on the replacement of the 

decoding of the received word as a whole by separate de-

codings of the component codes and a frequent inter-

change of extrinsic information between them. The proce-

dure is repeated for several times (iterations). 

A Tanner graph is a simple graphical visualization of 

the structure of a concatenated code. It consists of variable 

nodes ( ), which stand for information or parity bits, 

check nodes ( ), representing parity checks of all neigh-

boring variable nodes, and edges between the nodes. A 

Tanner graph can be used for an efficient implementation 

of the iterative decoding process, denoted message-passing 

or sum-product algorithm [5]. The nodes act as independ-

ent processing units. They compute outgoing messages at 

every edge from the incoming messages of all other inci-

dent edges of this node. The messages within the graph are 

typically log-likelihood ratios (LLRs) corresponding to the 

values of the variable nodes. 

When the incoming information is processed, it is typi-

cally assumed that the information on different edges is 

independent of each other. As long as the neighborhood of 

every node is tree-like, the required independence of the 

incoming messages is guaranteed [6]. But if a message can 

return to its origin via several nodes and edges, the code 

graph will contain so-called cycles. Only on cycle-free 

code graphs message-passing decoding will converge to 

the optimal solution [7][8]. Message-passing algorithms 

applied to concatenated codes despite their cycles gener-

ally achieve no longer optimum decoding but they are still 

pretty good. Moreover, iterative decoding has an excellent 

complexity vs. performance trade-off [6]. 



The Tanner graph of a short Repeat-Accumulate code is 

shown in Fig. 1. It is obvious that such a concatenated 

code must possess cycles. The construction of good codes 

using serial concatenation inevitably results in the pres-

ence of cycles in the code graph. Very short cycles in the 

code graph impair the performance of iterative decoding. 

But their probability extremely decreases for longer block 

lengths. 

It is apparent that it depends on the number of com-

pleted iterations whether the neighborhood of each node is 

still tree-like, and thus, whether the message-passing de-

coding is still cycle-free. 

 

3. DECODING OF THE ACCUMULATOR 

 

For a single accumulator, there is no need to apply itera-

tive decoding, since a simple accumulator can be decoded 

in one step. However, if an accumulator is one component 

code of a concatenated code, it will be decoded in each 

iteration, and messages will be exchanged with the other 

subdecoders.  

The following parts of this section present two typically 

used update modes for the decoding of the accumulator 

that base on the representation of the accumulator by its 

Tanner graph. 

 

3.1. Serial Accumulator Update 

 

The serial update of the messages in the accumulator 

graph corresponds to an optimum decoding for an accumu-

lator [7][8]. Messages are passed forward and backward 

through the accumulator graph, so that they finally contain 

all the information available for every variable node from 

all other nodes (cf. Fig. 2). 

The values calculated by the outer subdecoder in the 

previous iteration are included as so-called a-priori infor-

mation Lo(xi) in the computation of the messages in the 

code graph of the accumulator (the inner subdecoder). The 

information arriving at variable node yi from the forward 

and backward path is denoted Lef(yi) and Leb(yi). In the µ-th 

iteration their values can be computed by 

( ) ( ) ( ) ( )( ) ( 1) ( )

1 1ef i o i ch i ef i
L y L x L y L yµ µ µ−

− −
 = +   (1) 

( ) ( ) ( ) ( )( ) ( 1) ( )

1 1 1eb i o i ch i eb i
L y L x L y L yµ µ µ−

+ + +
 = +  , (2) 

where Lch(yi) denotes the LLR at the output of the channel 

[7][8]. The check operation  is defined as [9] 

( ) ( )( )2 2
2 atanh tanh tanha bc a b= = ⋅ ⋅ . (3) 

The extrinsic information of check node xi in the µ-th it-

eration is determined by 

( )( )

e i
L xµ  ( ) ( )( )

1 1ch i ef i
L y L yµ

− −
 = +   

 ( ) ( )( )

ch i eb i
L y L y

µ +  , (4) 

and finally passed to the outer subdecoder. Refer to [7][8] 

for more information about the serial update, initial values, 

and boundary conditions. 

 

3.2. Parallel Accumulator Update 

 

In the context of Repeat-Accumulate codes Jin [10] pro-

posed a simple parallel decoding scheme that replaces the 

serial message flow in the accumulator with only little 

compromise in performance. The approach works as fol-

lows. Instead of performing one forward and one back-

ward recursion and updating the outgoing messages of 

each node serially, the messages are updated in parallel at 

the same time by using the values of the previous iteration. 

Mathematically, this can be expressed as 

( ) ( ) ( ) ( )( ) ( 1) ( 1)

1 1ef i o i ch i ef i
L y L x L y L y

µ µ µ− −

− −
 = +   (5) 

( ) ( ) ( ) ( )( ) ( 1) ( 1)

1 1 1eb i o i ch i eb i
L y L x L y L yµ µ µ− −

+ + +
 = +  . (6) 

According to [8] this parallelization of the relations in 

(1) and (2) influences the convergence of the algorithm 

and the error correcting capability of the code only mar-

ginally for sufficient iterations. But this algorithm repre-

sents no longer an optimum decoder for the accumulator. 

This simplification will have an impact on the conver-

gence of the iterative decoder and the global decoding 

result of the complete word. It is the aim of the next sec-

tion to study this issue for several serial concatenated 

codes with an inner accumulator. 

 

4. SIMULATION RESULTS FOR SOME SERIAL 

CONCATENATED CODES 

 

We investigated the performance of RA, ARA and PA 

codes. For each code two simulations were performed us-

ing the same structure of the code graph, the same parame-

ters, and the same randomly generated interleaver pat-

tern(s). They only differed in the chosen update mode for  
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Fig. 1  Tanner graph of a short 

RA code 

Fig. 2  message flow in the 

code graph of the accumulator 
 



 

the decoding of the accumulator(s). The received words 

were decoded iteratively using message-passing. The algo-

rithm was implemented with consecutively working sub-

decoders and information exchange after the decoding of 

every component code. The transmission was modeled 

using a channel with Additive White Gaussian Noise 

(AWGN) with Binary Phase Shift Keying (BPSK) modu-

lation. All applied interleaver patterns were generated by 

an S-Random-Interleaver. For the simulation the block- 

and the bit-error rate were evaluated after every iteration 

up to a maximum number of 30 iterations. Only errors in 

the information word were considered to identify the num-

ber of block and bit errors. 

 

4.1. Repeat-Accumulate Codes 

 

The Repeat-Accumulate codes (RA) were defined by Div-

salar, Jin, and McEliece in 1998 [1]. Fig. 3a shows their 

structure in principle. Fig. 4 and Fig. 5 present the simula-

tion results for a non-systematic RA code of rate 1/3 with 

information block length k=1024 and repetition 3 for the 

serial and the parallel update mode. 

As expected, the block-error rates decrease with more 

iterations for both update modes. The serial update mode, 

which processes the information of a higher number of 

nodes per iteration, yields faster convergence than its ap-

proximation, the parallel update mode. But in some cases, 
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Fig. 4  RA codes: block- and bit-error rates for the serial update 

mode 

 Fig. 5  RA codes: block- and bit-error rates for the parallel up-

date mode 
 

Fig. 3a  structure of RA codes 

Fig. 3b  structure of ARA codes 

Fig. 3c  structure of a PA code with an outer 2-D TPC/SPC code 



when after several iterations only a little fraction of all 

words is still incorrect, the following effect can be ob-

served. Especially for the serial update mode, a continued 

iterative decoding of these words generates more and more 

bit errors. The not converging decoding process of these  

few words can cause a dramatically increase of the bit-

error rate for a higher number of iterations. Since the serial 

update mode is more susceptible to this problem, it can be 

finally outperformed by the parallel update mode. This 

effect can be observed similarly for the min-sum algorithm 

[8], a version of the message-passing algorithm with an 

approximated operation at the check nodes. Fig. 6 shows 

the block- and bit-error rates with the number of iterations 

for a signal-to-noise-ratio Eb/N0 = 2.75dB and both update 

modes. 

 

4.2. Accumulate-Repeat-Accumulate Codes 

 

Accumulate-Repeat-Accumulate codes (ARA), whose 

structure is depicted in Fig. 3b, were first proposed by 

Abbasfar, Divsalar, and Kung [3]. They can be viewed as 

precoded Repeat-Accumulate codes with puncturing. For 

detailed information and puncture patterns it is referred to 

[3]. Simulations were done for a systematic ARA code 

with information block length k=1000, repetition 3, and 

the puncture patterns proposed in [3] for code rate equal to 

2/3. The resulting bit-error rates are presented in Fig. 7. 

The effect of the accumulator decoding mode described in 

the context of RA codes can be similarly observed for 

ARA codes. However, the differences between the two 

modes are not as large as for the RA codes. 

 

4.3. Product-Accumulate Codes 

 

Product-Accumulate codes (PA) [4], sometimes also de-

noted as Parity-Accumulate codes, are a class of in-

terleaved serial concatenated codes, where the outer code 

is a parallel concatenation of two Single Parity-Check 

(SPC) codes. According to their structure (cf. Fig. 3c) the 

check nodes can be divided into two groups to determine 

the update order in the outer subdecoder. Every SPC code 

corresponds to a cycle-free part of the Tanner graph and 

can be decoded separately. Simulations were performed 

for a non-systematic PA code with information block 

length k=1000. Every block was divided into 500 parts of 

length t=2 to calculate the single parity checks. Hence, the 

resulting code rate was equal to 1/2. The bit-error rates for 

both update modes show a similar behavior as those of RA 

codes (cf. Fig. 8). 

 

5. DISCUSSION AND CONCLUSION 

 

Message-passing is an efficient decoding algorithm for 

serial concatenated codes. It yields good performance for 

these codes while requiring a relatively low decoding 

complexity. It was shown that for several serial concate-

nated codes with an inner accumulator the parallel update 

mode for the accumulator decoding leads to a more steadi-

ly convergence of the bit-error rates. Despite its slower 

convergence, iterative decoding with the parallel update 

mode can finally lead to a lower bit-error rate than the 

serial update mode. This is a remarkable observation, 

since the parallel update mode was originally introduced 

as an approximation for the serial update mode, which re-

presents the optimum decoding for the inner accumulator. 

The chosen update mode determines the number of 

nodes considered in the updating process at the nodes in 

every iteration. Therefore, it influences how many itera-

tions the neighborhood of each node is tree-like and the 

decoding process cycle-free, i.e. optimal. The probability 

of very short cycles in a code graph with a randomly gen-

erated interleaver pattern extremely decreases for long 

block lengths. Hence, this effect mainly occurs for short or 

moderate block lengths. 

The result of the iterative decoding process can be con-

trolled by the constraints given in the code graph. It can be 

examined whether the parity sums at all check nodes are 

satisfied by the calculated bits. The increasing number of 

bit errors can be ascribed to only a few words whose de-

coding process does not converge. These words can be 

detected by a following control of all check nodes, but this 

involves further decoding complexity. 

Besides the bit-error rates for both update modes Fig. 6 

shows for the serial update mode how many bit errors re-

main undetected after this control process by the check 

nodes. This illustrates that for a decoding process with a 

fixed number of iterations, e.g. 30, the parallel update 

mode yields almost the same performance like iterative 

decoding with serial update and following detection but 

with less decoding complexity. Implementing an iterative 

decoder for such serial concatenated codes with short or 

moderate block lengths this fact can be utilized. 
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Fig. 6  RA codes: comparison of block- and bit-error rates for 

both update modes 
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Fig. 7  ARA codes: bit-error rates for both update modes Fig. 8  PA codes: bit-error rates for both update modes 


